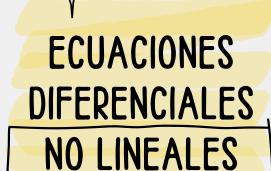
Aplicaciones en Problemas de Crecimiento y Decrecimiento

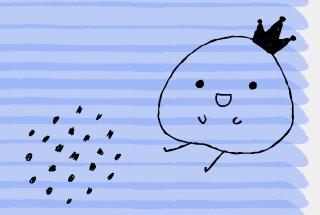
Procesos Biológicos y Ambientales

Además del crecimiento demográfico, estas ecuaciones se aplican en el estudio del crecimiento de organismos, la propagación de enfermedades, la desintegración radiactiva y la degradación de sustancias.

Permiten predecir comportamientos a largo plazo, optimizar sistemas y formular estrategias de control en situaciones donde las tasas de cambio varían de manera no lineal.



Universidad Interamericana para el Desarrollo (UNID)


Alumno: Christian David Arregoitia Chávez

Asignatura: Ecuaciones Diferenciales

Docente: Adriana Cruz Sedano



Las ecuaciones diferenciales no lineales permiten modelar la complejidad de sistemas reales en los que las relaciones entre las variables no siguen un comportamiento lineal.

¿Qué Son las Ecuaciones Diferenciales No Lineales?

• Definición:

Son ecuaciones en las que la función desconocida y sus derivadas aparecen de forma no lineal.

• Características:

Pueden presentar soluciones con comportamientos inesperados, como bifurcaciones, caos y múltiples puntos de equilibrio.

• Aplicación:

Se utilizan en la modelación de sistemas dinámicos en física, biología, química e ingeniería.

Descripción:

 El crecimiento de la población es un claro ejemplo de fenómeno demográfico donde se observa un incremento limitado por factores ambientales y recursos.

Importancia:

Permite predecir la saturación poblacional y ayudar en la planificación de recursos y políticas públicas, considerando la capacidad de carga del medio ambiente.

Ecuación y Función Logística

Ecuación Logística

$$rac{dP}{dt} = rP\left(1-rac{P}{K}
ight)$$

donde P representa la población, r la tasa de crecimiento y K la capacidad máxima del entorno.

Función Logística

La solución de esta ecuación es una curva sigmoidea, que muestra un crecimiento inicial rápido y una posterior estabilización al alcanzar K, reflejando la realidad de muchos sistemas naturales.

Aplicaciones en la Química

- Reacciones No Lineales: Muchos procesos químicos se comportan de manera no lineal, especialmente en reacciones autocatalíticas, donde el producto acelera la reacción.
- Modelado Cinético:
 Las ecuaciones no lineales
 permiten describir la
 evolución de las
 concentraciones de reactivos
 y productos, ayudando a
 entender la dinámica y el
 equilibrio de las reacciones.

